Count lifts of non-maximal closed horocycles on $$SL_N(\mathbb {Z}) \backslash SL_N(\mathbb {R})/SO_N({\mathbb {R}})$$

نویسندگان

چکیده

A closed horocycle $$\mathcal {U}$$ on $$SL_N(\mathbb {Z}) \backslash SL_N(\mathbb {R})/SO_N({\mathbb {R}})$$ has many lifts to the universal cover . Under some conditions horocycle, we give a precise asymptotic count of its bounded distance away from given base point in cover. This partially generalizes previous work Mohammadi–Golsefidy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON MAXIMAL IDEALS OF R∞L

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ring of real-valued continuous functions on $L$. We consider the set $$mathcal{R}_{infty}L = {varphi in mathcal{R} L : uparrow varphi( dfrac{-1}{n}, dfrac{1}{n}) mbox{ is a compact frame for any $n in mathbb{N}$}}.$$ Suppose that $C_{infty} (X)$ is the family of all functions $f in C(X)$ for which the set ${x in X: |f(x)|geq dfrac{1...

متن کامل

Equidistribution of Kronecker Sequences along Closed Horocycles

It is well known that (i) for every irrational number α the Kronecker sequence mα (m = 1, . . . ,M) is equidistributed modulo one in the limit M → ∞, and (ii) closed horocycles of length l become equidistributed in the unit tangent bundle T1M of a hyperbolic surface M of finite area, as l → ∞. In the present paper both equidistribution problems are studied simultaneously: we prove that for any ...

متن کامل

A note on maximal non-prime ideals

The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$,  we mean an ideal $I$ of $R$ such that $Ineq R$.  We say that a proper ideal $I$ of a ring $R$ is a  maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2022

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-022-01803-0